Nonlocal-interaction equations on uniformly prox-regular sets
We study the well-posedness of a class of nonlocal-interaction equations on general domains Ω⊂Rd, including nonconvex ones. We show that under mild assumptions on the regularity of domains (uniform proxregularity), for -geodesically convex interaction and external potentials, the nonlocal-interactio...
Váldodahkkit: | Carrillo de la Plata, JA, Slepčev, D, Wu, L |
---|---|
Materiálatiipa: | Journal article |
Giella: | English |
Almmustuhtton: |
American Institute of Mathematical Sciences
2016
|
Geahča maid
-
Nonlocal-interaction equation on graphs: Gradient flow structure and continuum limit
Dahkki: Esposito, A, et al.
Almmustuhtton: (2021) -
Quantitative error estimates for the large friction limit of Vlasov equation with nonlocal forces
Dahkki: Carrillo de la Plata, JA, et al.
Almmustuhtton: (2020) -
V-Prox-Regular Functions in Smooth Banach Spaces
Dahkki: Messaoud Bounkhel, et al.
Almmustuhtton: (2020-01-01) -
Sparse identification of nonlocal interaction kernels in nonlinear gradient flow equations via partial inversion
Dahkki: Carrillo de la Plata, J, et al.
Almmustuhtton: (2025) -
Convergence of a particle method for a regularized spatially homogeneous Landau equation
Dahkki: Carrillo de la Plata, JA, et al.
Almmustuhtton: (2023)