Solution to a problem of Bollobás and Häggkvist on Hamilton cycles in regular graphs
We prove that, for large n, every 3-connected D-regular graph on n vertices with is Hamiltonian. This is best possible and verifies the only remaining case of a conjecture posed independently by Bollobás and Häggkvist in the 1970s. The proof builds on a structural decomposition result proved recent...
主要な著者: | Kühn, D, Lo, A, Osthus, D, Staden, K |
---|---|
フォーマット: | Journal article |
言語: | English |
出版事項: |
Elsevier
2015
|
類似資料
Some sufficient conditions on hamilton graphs with toughness
著者:: Gaixiang Cai, 等
出版事項: (2022-10-01)
著者:: Gaixiang Cai, 等
出版事項: (2022-10-01)
類似資料
-
An exact minimum degree condition for Hamilton cycles in oriented graphs
著者:: Keevash, P, 等
出版事項: (2008) -
Matchings and Hamilton cycles in hypergraphs
著者:: Daniela Kühn, 等
出版事項: (2005-01-01) -
A counterexample to the Bollobás–Riordan conjectures on sparse graph limits
著者:: Sah, Ashwin, 等
出版事項: (2021) -
A counterexample to the Bollobás–Riordan conjectures on sparse graph limits
著者:: Sah, Ashwin, 等
出版事項: (2021) -
On the Bishop-Phelps-Bollobás Property for Numerical Radius
著者:: Sun Kwang Kim, 等
出版事項: (2014-01-01)