A simple mixture policy parameterization for improving sample efficiency of CVaR optimization

Reinforcement learning algorithms utilizing policy gradients (PG) to optimize Conditional Value at Risk (CVaR) face significant challenges with sample inefficiency, hindering their practical applications. This inefficiency stems from two main facts: a focus on tail-end performance that overlooks man...

Szczegółowa specyfikacja

Opis bibliograficzny
Główni autorzy: Luo, Y, Pan, Y, Wang, H, Torr, P, Poupart, P
Format: Conference item
Język:English
Wydane: University of Massachusetts Amherst 2024