Learning DNFs under product distributions via μ-biased quantum Fourier sampling

We show that DNF formulae can be quantum PAC-learned in polynomial time under product distributions using a quantum example oracle. The current best classical algorithm runs in superpolynomial time. Our result extends the work by Bshouty and Jackson (1998) that proved that DNF formulae are efficient...

全面介绍

书目详细资料
Main Authors: Kanade, V, Rocchetto, A, Severini, S
格式: Journal article
语言:English
出版: Rinton Press 2019
实物特征
总结:We show that DNF formulae can be quantum PAC-learned in polynomial time under product distributions using a quantum example oracle. The current best classical algorithm runs in superpolynomial time. Our result extends the work by Bshouty and Jackson (1998) that proved that DNF formulae are efficiently learnable under the uniform distribution using a quantum example oracle. Our proof is based on a new quantum algorithm that efficiently samples the coefficients of a $\mu$--biased Fourier transform.