Learning DNFs under product distributions via μ-biased quantum Fourier sampling
We show that DNF formulae can be quantum PAC-learned in polynomial time under product distributions using a quantum example oracle. The current best classical algorithm runs in superpolynomial time. Our result extends the work by Bshouty and Jackson (1998) that proved that DNF formulae are efficient...
Hlavní autoři: | Kanade, V, Rocchetto, A, Severini, S |
---|---|
Médium: | Journal article |
Jazyk: | English |
Vydáno: |
Rinton Press
2019
|
Podobné jednotky
-
Learning hard quantum distributions with variational autoencoders
Autor: Rocchetto, A, a další
Vydáno: (2018) -
Modelling non-markovian quantum processes with recurrent neural networks
Autor: Banchi, L, a další
Vydáno: (2018) -
Modelling non-markovian quantum processes with recurrent neural networks
Autor: Leonardo Banchi, a další
Vydáno: (2018-01-01) -
Experimental learning of quantum states
Autor: Rocchetto, A, a další
Vydáno: (2019) -
Algorithmic models in quantum mechanics
Autor: Rocchetto, A
Vydáno: (2019)