Learning DNFs under product distributions via μ-biased quantum Fourier sampling
We show that DNF formulae can be quantum PAC-learned in polynomial time under product distributions using a quantum example oracle. The current best classical algorithm runs in superpolynomial time. Our result extends the work by Bshouty and Jackson (1998) that proved that DNF formulae are efficient...
Κύριοι συγγραφείς: | Kanade, V, Rocchetto, A, Severini, S |
---|---|
Μορφή: | Journal article |
Γλώσσα: | English |
Έκδοση: |
Rinton Press
2019
|
Παρόμοια τεκμήρια
-
Learning hard quantum distributions with variational autoencoders
ανά: Rocchetto, A, κ.ά.
Έκδοση: (2018) -
Modelling non-markovian quantum processes with recurrent neural networks
ανά: Banchi, L, κ.ά.
Έκδοση: (2018) -
Modelling non-markovian quantum processes with recurrent neural networks
ανά: Leonardo Banchi, κ.ά.
Έκδοση: (2018-01-01) -
Experimental learning of quantum states
ανά: Rocchetto, A, κ.ά.
Έκδοση: (2019) -
Algorithmic models in quantum mechanics
ανά: Rocchetto, A
Έκδοση: (2019)