Learning DNFs under product distributions via μ-biased quantum Fourier sampling
We show that DNF formulae can be quantum PAC-learned in polynomial time under product distributions using a quantum example oracle. The current best classical algorithm runs in superpolynomial time. Our result extends the work by Bshouty and Jackson (1998) that proved that DNF formulae are efficient...
Príomhchruthaitheoirí: | Kanade, V, Rocchetto, A, Severini, S |
---|---|
Formáid: | Journal article |
Teanga: | English |
Foilsithe / Cruthaithe: |
Rinton Press
2019
|
Míreanna comhchosúla
Míreanna comhchosúla
-
Learning hard quantum distributions with variational autoencoders
de réir: Rocchetto, A, et al.
Foilsithe / Cruthaithe: (2018) -
Modelling non-markovian quantum processes with recurrent neural networks
de réir: Banchi, L, et al.
Foilsithe / Cruthaithe: (2018) -
Modelling non-markovian quantum processes with recurrent neural networks
de réir: Leonardo Banchi, et al.
Foilsithe / Cruthaithe: (2018-01-01) -
Experimental learning of quantum states
de réir: Rocchetto, A, et al.
Foilsithe / Cruthaithe: (2019) -
Algorithmic models in quantum mechanics
de réir: Rocchetto, A
Foilsithe / Cruthaithe: (2019)