Learning DNFs under product distributions via μ-biased quantum Fourier sampling
We show that DNF formulae can be quantum PAC-learned in polynomial time under product distributions using a quantum example oracle. The current best classical algorithm runs in superpolynomial time. Our result extends the work by Bshouty and Jackson (1998) that proved that DNF formulae are efficient...
Main Authors: | Kanade, V, Rocchetto, A, Severini, S |
---|---|
פורמט: | Journal article |
שפה: | English |
יצא לאור: |
Rinton Press
2019
|
פריטים דומים
-
Learning hard quantum distributions with variational autoencoders
מאת: Rocchetto, A, et al.
יצא לאור: (2018) -
Modelling non-markovian quantum processes with recurrent neural networks
מאת: Banchi, L, et al.
יצא לאור: (2018) -
Modelling non-markovian quantum processes with recurrent neural networks
מאת: Leonardo Banchi, et al.
יצא לאור: (2018-01-01) -
Experimental learning of quantum states
מאת: Rocchetto, A, et al.
יצא לאור: (2019) -
Algorithmic models in quantum mechanics
מאת: Rocchetto, A
יצא לאור: (2019)