Learning DNFs under product distributions via μ-biased quantum Fourier sampling
We show that DNF formulae can be quantum PAC-learned in polynomial time under product distributions using a quantum example oracle. The current best classical algorithm runs in superpolynomial time. Our result extends the work by Bshouty and Jackson (1998) that proved that DNF formulae are efficient...
主要な著者: | Kanade, V, Rocchetto, A, Severini, S |
---|---|
フォーマット: | Journal article |
言語: | English |
出版事項: |
Rinton Press
2019
|
類似資料
-
Learning hard quantum distributions with variational autoencoders
著者:: Rocchetto, A, 等
出版事項: (2018) -
Modelling non-markovian quantum processes with recurrent neural networks
著者:: Banchi, L, 等
出版事項: (2018) -
Modelling non-markovian quantum processes with recurrent neural networks
著者:: Leonardo Banchi, 等
出版事項: (2018-01-01) -
Experimental learning of quantum states
著者:: Rocchetto, A, 等
出版事項: (2019) -
Algorithmic models in quantum mechanics
著者:: Rocchetto, A
出版事項: (2019)