Learning DNFs under product distributions via μ-biased quantum Fourier sampling
We show that DNF formulae can be quantum PAC-learned in polynomial time under product distributions using a quantum example oracle. The current best classical algorithm runs in superpolynomial time. Our result extends the work by Bshouty and Jackson (1998) that proved that DNF formulae are efficient...
Principais autores: | Kanade, V, Rocchetto, A, Severini, S |
---|---|
Formato: | Journal article |
Idioma: | English |
Publicado em: |
Rinton Press
2019
|
Registros relacionados
-
Learning hard quantum distributions with variational autoencoders
por: Rocchetto, A, et al.
Publicado em: (2018) -
Modelling non-markovian quantum processes with recurrent neural networks
por: Banchi, L, et al.
Publicado em: (2018) -
Modelling non-markovian quantum processes with recurrent neural networks
por: Leonardo Banchi, et al.
Publicado em: (2018-01-01) -
Experimental learning of quantum states
por: Rocchetto, A, et al.
Publicado em: (2019) -
Algorithmic models in quantum mechanics
por: Rocchetto, A
Publicado em: (2019)