Quantified Legendreness and the regularity of minima
<p>We introduce a new quantification of nonuniform ellipticity in variational problems via convex duality, and prove higher differentiability and 2<em>d</em>-smoothness results for vector valued minimizers of possibly degenerate functionals. Our framework covers convex, anisotropic...
Hoofdauteurs: | De Filippis, C, Koch, L, Kristensen, J |
---|---|
Formaat: | Journal article |
Taal: | English |
Gepubliceerd in: |
Springer
2024
|
Gelijkaardige items
-
Quantified Legendreness and the Regularity of Minima
door: De Filippis, C, et al.
Gepubliceerd in: (2024) -
Boundary regularity of minima
door: Kristensen, J, et al.
Gepubliceerd in: (2008) -
On the regularity of the ω-minima of φ-functionals
door: De Filippis, C
Gepubliceerd in: (2019) -
On the regularity of minima of non-autonomous functionals
door: De Filippis, C, et al.
Gepubliceerd in: (2019) -
Calculus of variations. - Boundary regularity of minima
door: Kristensen, J, et al.
Gepubliceerd in: (2008)