Quantified Legendreness and the regularity of minima
<p>We introduce a new quantification of nonuniform ellipticity in variational problems via convex duality, and prove higher differentiability and 2<em>d</em>-smoothness results for vector valued minimizers of possibly degenerate functionals. Our framework covers convex, anisotropic...
Huvudupphovsmän: | De Filippis, C, Koch, L, Kristensen, J |
---|---|
Materialtyp: | Journal article |
Språk: | English |
Publicerad: |
Springer
2024
|
Liknande verk
Liknande verk
-
Quantified Legendreness and the Regularity of Minima
av: De Filippis, C, et al.
Publicerad: (2024) -
Boundary regularity of minima
av: Kristensen, J, et al.
Publicerad: (2008) -
On the regularity of the ω-minima of φ-functionals
av: De Filippis, C
Publicerad: (2019) -
On the regularity of minima of non-autonomous functionals
av: De Filippis, C, et al.
Publicerad: (2019) -
Calculus of variations. - Boundary regularity of minima
av: Kristensen, J, et al.
Publicerad: (2008)