Self-supervised multi-modal alignment for whole body medical imaging
This paper explores the use of self-supervised deep learning in medical imaging in cases where two scan modalities are available for the same subject. Specifically, we use a large publicly-available dataset of over 20,000 subjects from the UK Biobank with both whole body Dixon technique magnetic res...
主要な著者: | Windsor, R, Jamaludin, A, Kadir, T, Zisserman, A |
---|---|
その他の著者: | de Bruijne, M |
フォーマット: | Conference item |
言語: | English |
出版事項: |
Springer
2021
|
類似資料
-
Self-supervised learning for spinal MRIs
著者:: Jamaludin, A, 等
出版事項: (2017) -
A convolutional approach to vertebrae detection and labelling in whole spine MRI
著者:: Windsor, R, 等
出版事項: (2020) -
Vision-language modelling for radiological imaging and reports in the low data regime
著者:: Windsor, R, 等
出版事項: (2024) -
Disentangled Speech Embeddings Using Cross-Modal Self-Supervision
著者:: Nagrani, A, 等
出版事項: (2020) -
Multi-task self-supervised visual learning
著者:: Doersch, C, 等
出版事項: (2017)