Decentralised learning with distributed gradient descent and random features
We investigate the generalisation performance of Distributed Gradient Descent with implicit regularisation and random features in the homogenous setting where a network of agents are given data sampled independently from the same unknown distribution. Along with reducing the memory footprint, random...
Κύριοι συγγραφείς: | Richards, D, Rebeschini, P, Rosasco, L |
---|---|
Μορφή: | Conference item |
Γλώσσα: | English |
Έκδοση: |
Proceedings of Machine Learning Research
2020
|
Παρόμοια τεκμήρια
-
Robust gradient descent for phase retrieval
ανά: Buna-Marginean, A, κ.ά.
Έκδοση: (2025) -
Graph-dependent implicit regularisation for distributed stochastic subgradient descent
ανά: Richards, D, κ.ά.
Έκδοση: (2020) -
Generalization bounds for label noise stochastic gradient descent
ανά: Huh, JE, κ.ά.
Έκδοση: (2023) -
Generalization bounds for label noise stochastic gradient descent
ανά: Huh, JE, κ.ά.
Έκδοση: (2024) -
Optimal statistical rates for decentralised non-parametric regression with linear speed-up
ανά: Richards, D, κ.ά.
Έκδοση: (2019)