Decentralised learning with distributed gradient descent and random features
We investigate the generalisation performance of Distributed Gradient Descent with implicit regularisation and random features in the homogenous setting where a network of agents are given data sampled independently from the same unknown distribution. Along with reducing the memory footprint, random...
Autori principali: | Richards, D, Rebeschini, P, Rosasco, L |
---|---|
Natura: | Conference item |
Lingua: | English |
Pubblicazione: |
Proceedings of Machine Learning Research
2020
|
Documenti analoghi
Carathéodory sampling for stochastic gradient descent
di: Cosentino, F, et al.
Pubblicazione: (2020)
di: Cosentino, F, et al.
Pubblicazione: (2020)
Documenti analoghi
-
Robust gradient descent for phase retrieval
di: Buna-Marginean, A, et al.
Pubblicazione: (2025) -
Graph-dependent implicit regularisation for distributed stochastic subgradient descent
di: Richards, D, et al.
Pubblicazione: (2020) -
Generalization bounds for label noise stochastic gradient descent
di: Huh, JE, et al.
Pubblicazione: (2023) -
Generalization bounds for label noise stochastic gradient descent
di: Huh, JE, et al.
Pubblicazione: (2024) -
Optimal statistical rates for decentralised non-parametric regression with linear speed-up
di: Richards, D, et al.
Pubblicazione: (2019)