The benefits, risks and bounds of personalizing the alignment of large language models to individuals
Large language models (LLMs) undergo ‘alignment’ so that they better reflect human values or preferences, and are safer or more useful. However, alignment is intrinsically difficult because the hundreds of millions of people who now interact with LLMs have different preferences for language and conv...
Hlavní autoři: | Kirk, HR, Vidgen, B, Röttger, P, Hale, SA |
---|---|
Médium: | Journal article |
Jazyk: | English |
Vydáno: |
Springer Nature
2024
|
Podobné jednotky
-
Hatemoji: A test suite and adversarially-generated dataset for benchmarking and detecting emoji-based hate
Autor: Kirk, HR, a další
Vydáno: (2022) -
Is more data better? re-thinking the importance of efficiency in abusive language detection with transformers-based active learning
Autor: Kirk, HR, a další
Vydáno: (2022) -
Hatemoji: A test suite and adversarially-generated dataset for benchmarking and detecting emoji-based hate
Autor: Kirk, H, a další
Vydáno: (2021) -
Exploring large language models for ontology alignment
Autor: He, Y, a další
Vydáno: (2023) -
Survey on large language models alignment research
Autor: LIU Kunlin, a další
Vydáno: (2024-06-01)