The benefits, risks and bounds of personalizing the alignment of large language models to individuals
Large language models (LLMs) undergo ‘alignment’ so that they better reflect human values or preferences, and are safer or more useful. However, alignment is intrinsically difficult because the hundreds of millions of people who now interact with LLMs have different preferences for language and conv...
Үндсэн зохиолчид: | Kirk, HR, Vidgen, B, Röttger, P, Hale, SA |
---|---|
Формат: | Journal article |
Хэл сонгох: | English |
Хэвлэсэн: |
Springer Nature
2024
|
Ижил төстэй зүйлс
Ижил төстэй зүйлс
-
Hatemoji: A test suite and adversarially-generated dataset for benchmarking and detecting emoji-based hate
-н: Kirk, HR, зэрэг
Хэвлэсэн: (2022) -
Is more data better? re-thinking the importance of efficiency in abusive language detection with transformers-based active learning
-н: Kirk, HR, зэрэг
Хэвлэсэн: (2022) -
Hatemoji: A test suite and adversarially-generated dataset for benchmarking and detecting emoji-based hate
-н: Kirk, H, зэрэг
Хэвлэсэн: (2021) -
Exploring large language models for ontology alignment
-н: He, Y, зэрэг
Хэвлэсэн: (2023) -
Survey on large language models alignment research
-н: LIU Kunlin, зэрэг
Хэвлэсэн: (2024-06-01)