Homogenization of a neutronic critical diffusion problem with drift
In this paper we study the homogenization of an eigenvalue problem for a cooperative system of weakly coupled elliptic partial differential equations, called the neutronic multigroup diffusion model, in a periodic heterogeneous domain. Such a model is used for studying the criticality of nuclear rea...
Autor principal: | Capdeboscq, Y |
---|---|
Formato: | Journal article |
Idioma: | English |
Publicado em: |
2002
|
Registros relacionados
-
Homogenization of a diffusion equation with drift
por: Capdeboscq, Y
Publicado em: (1998) -
Homogenization of a spectral problem in neutronic multigroup diffusion
por: Allaire, G, et al.
Publicado em: (2000) -
Homogenization of a neutronic multigroup evolution model
por: Capdeboscq, Y
Publicado em: (2000) -
Finite element approximation of elliptic homogenization problems in nondivergence-form
por: Capdeboscq, Y, et al.
Publicado em: (2020) -
Homogenization and localization for a 1-D eigenvalue problem in a periodic medium with an interface
por: Allaire, G, et al.
Publicado em: (2002)