Breaking the deadly triad with a target network

The deadly triad refers to the instability of a reinforcement learning algorithm when it employs off-policy learning, function approximation, and bootstrapping simultaneously. In this paper, we investigate the target network as a tool for breaking the deadly triad, providing theoretical support for...

詳細記述

書誌詳細
主要な著者: Zhang, S, Yao, H, Whiteson, S
フォーマット: Conference item
言語:English
出版事項: PMLR 2021