Invariable generation of the symmetric group
We say that permutations π1, ..., πr ∈ Sn invariably generate Sn if, no matter how one chooses conjugates π′1, ..., π′r of these permutations, π′1, ..., π′r generate Sn. We show that if π1, π2, π3 are chosen randomly from Sn then, with probability tending to 1 as n → ∞, they do not invariably genera...
主要な著者: | Green, B, Eberhard, S, Ford, K |
---|---|
フォーマット: | Journal article |
出版事項: |
Duke University Press
2017
|
類似資料
-
Invariants in Non-Commutative Variables of the Symmetric and Hyperoctahedral Groups
著者:: Anouk Bergeron-Brlek
出版事項: (2008-01-01) -
The Bruhat order on conjugation-invariant sets of involutions in the symmetric group
著者:: Mikael Hansson
出版事項: (2015-01-01) -
Symmetric function theory and unitary invariant ensembles
著者:: Jonnadula, B, 等
出版事項: (2021) -
Invariance properties for coefficients of symmetric functions
著者:: Emmanuel Briand, 等
出版事項: (2015-01-01) -
Invariable generation of groups of finite rank
著者:: Eloisa Detomi, 等
出版事項: (2018-12-01)