Skip to content
VuFind
English
Deutsch
Español
Français
Italiano
日本語
Nederlands
Português
Português (Brasil)
中文(简体)
中文(繁體)
Türkçe
עברית
Gaeilge
Cymraeg
Ελληνικά
Català
Euskara
Русский
Čeština
Suomi
Svenska
polski
Dansk
slovenščina
اللغة العربية
বাংলা
Galego
Tiếng Việt
Hrvatski
हिंदी
Հայերէն
Українська
Sámegiella
Монгол
Language
All Fields
Title
Author
Subject
Call Number
ISBN/ISSN
Tag
Find
Advanced
If I remember rightly, $\cos\f...
Cite this
Text this
Email this
Print
Export Record
Export to RefWorks
Export to EndNoteWeb
Export to EndNote
Permanent link
If I remember rightly, $\cos\frac{\pi}{2} =1$
An account of some of the less rigorous utterances of applied mathematicians.
Bibliographic Details
Main Author:
Howison, S
Format:
Journal article
Published:
1992
Holdings
Description
Similar Items
Staff View
Similar Items
On the Diophantine equation $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{3p}$
by: Xiaodan Yuan, et al.
Published: (2017-02-01)
On the integral solutions of the Egyptian fraction equation $\frac ap=\frac 1x+\frac 1y+\frac 1z$
by: Wei Zhao, et al.
Published: (2021-03-01)
On 1w+1x+1y+1z=12 $\frac{1}{w} + \frac{1}{x} + \frac{1}{y} + \frac{1}{z} = \frac{1}{ 2} $ and some of its generalizations
by: Tingting Bai
Published: (2018-07-01)
Sea-quark dynamics in decuplet ( $$\frac{3}{2}^+$$ 3 2 + ) $$\rightarrow $$ → octet ( $$\frac{1}{2}^+$$ 1 2 + ) transition quadrupole moment
by: Preeti Bhall, et al.
Published: (2025-03-01)
Unbounded solutions of the max-type difference equation $$ x_{n + 1} = max\left\{ {\frac{{A_n }} {{X_n }},\frac{{B_n }} {{X_{n - 2} }}} \right\} $$
by: Kerbert Christopher, et al.
Published: (2008-06-01)