Predicting clinical endpoints and visual changes with quality-weighted tissue-based renal histological features

Two common obstacles limiting the performance of data-driven algorithms in digital histopathology classification tasks are the lack of expert annotations and the narrow diversity of datasets. Multi-instance learning (MIL) can address the former challenge for the analysis of whole slide images (WSI),...

Täydet tiedot

Bibliografiset tiedot
Päätekijät: Tam, KH, Soares, MF, Kers, J, Sharples, EJ, Ploeg, RJ, Kaisar, M, Rittscher, J
Aineistotyyppi: Journal article
Kieli:English
Julkaistu: Frontiers Media 2024