On guaranteed optimal robust explanations for NLP models
We build on abduction-based explanations for machine learning and develop a method for computing local explanations for neural network models in natural language processing (NLP). Our explanations comprise a subset of the words of the input text that satisfies two key features: optimality w.r.t. a u...
मुख्य लेखकों: | La Malfa, E, Michelmore, R, Zbrzezny, AM, Paoletti, N, Kwiatkowska, M |
---|---|
स्वरूप: | Conference item |
भाषा: | English |
प्रकाशित: |
International Joint Conferences on Artificial Intelligence
2021
|
समान संसाधन
-
Statistical guarantees for the robustness of Bayesian neural networks
द्वारा: Cardelli, L, और अन्य
प्रकाशित: (2019) -
Towards Faithful Model Explanation in NLP: A Survey
द्वारा: Qing Lyu, और अन्य
प्रकाशित: (2024-07-01) -
Explanation-Based Human Debugging of NLP Models: A Survey
द्वारा: Piyawat Lertvittayakumjorn, और अन्य
प्रकाशित: (2021-01-01) -
Robustness guarantees for deep neural networks on videos
द्वारा: Kwiatkowska, M, और अन्य
प्रकाशित: (2020) -
Safety and robustness for deep learning with provable guarantees (keynote)
द्वारा: Kwiatkowska, M
प्रकाशित: (2019)