On guaranteed optimal robust explanations for NLP models
We build on abduction-based explanations for machine learning and develop a method for computing local explanations for neural network models in natural language processing (NLP). Our explanations comprise a subset of the words of the input text that satisfies two key features: optimality w.r.t. a u...
主要な著者: | La Malfa, E, Michelmore, R, Zbrzezny, AM, Paoletti, N, Kwiatkowska, M |
---|---|
フォーマット: | Conference item |
言語: | English |
出版事項: |
International Joint Conferences on Artificial Intelligence
2021
|
類似資料
-
Statistical guarantees for the robustness of Bayesian neural networks
著者:: Cardelli, L, 等
出版事項: (2019) -
Towards Faithful Model Explanation in NLP: A Survey
著者:: Qing Lyu, 等
出版事項: (2024-07-01) -
Explanation-Based Human Debugging of NLP Models: A Survey
著者:: Piyawat Lertvittayakumjorn, 等
出版事項: (2021-01-01) -
Robustness guarantees for deep neural networks on videos
著者:: Kwiatkowska, M, 等
出版事項: (2020) -
Safety and robustness for deep learning with provable guarantees (keynote)
著者:: Kwiatkowska, M
出版事項: (2019)