On guaranteed optimal robust explanations for NLP models
We build on abduction-based explanations for machine learning and develop a method for computing local explanations for neural network models in natural language processing (NLP). Our explanations comprise a subset of the words of the input text that satisfies two key features: optimality w.r.t. a u...
Главные авторы: | La Malfa, E, Michelmore, R, Zbrzezny, AM, Paoletti, N, Kwiatkowska, M |
---|---|
Формат: | Conference item |
Язык: | English |
Опубликовано: |
International Joint Conferences on Artificial Intelligence
2021
|
Схожие документы
-
Statistical guarantees for the robustness of Bayesian neural networks
по: Cardelli, L, и др.
Опубликовано: (2019) -
Towards Faithful Model Explanation in NLP: A Survey
по: Qing Lyu, и др.
Опубликовано: (2024-07-01) -
Explanation-Based Human Debugging of NLP Models: A Survey
по: Piyawat Lertvittayakumjorn, и др.
Опубликовано: (2021-01-01) -
Robustness guarantees for deep neural networks on videos
по: Kwiatkowska, M, и др.
Опубликовано: (2020) -
Safety and robustness for deep learning with provable guarantees (keynote)
по: Kwiatkowska, M
Опубликовано: (2019)