Reinforcement learning for rule selection in end to end differentiable proving
Neural Theorem Provers (NTPs) are neuro-symbolic models that combine deep learning with a system of logic. They can learn representations for data, induce rules, are naturally interpretable, come with built-in explanations for conclusions, and demonstrate the capacity for systematic generalization....
Tác giả chính: | |
---|---|
Tác giả khác: | |
Định dạng: | Luận văn |
Ngôn ngữ: | English |
Được phát hành: |
2021
|
Những chủ đề: |