A Schanuel property for j
I give a model-theoretic setting for the modular j function and its derivatives. These structures, here called j-fields, provide an adequate setting for interpreting the Ax-Schanuel theorem for j of J. Pila and J. Tsimerman. Following the ideas of M. Bays, J. Kirby and A. J. Wilkie for exponential f...
Главный автор: | Eterović, S |
---|---|
Формат: | Journal article |
Опубликовано: |
Wiley
2018
|
Схожие документы
-
Ax-Schanuel for the j-function
по: Pila, J, и др.
Опубликовано: (2016) -
Skolem meets Schanuel
по: Bilu, Y, и др.
Опубликовано: (2022) -
Ax-Schanuel for Shimura varieties
по: Mok, N, и др.
Опубликовано: (2019) -
A Schanuel condition for Weierstrass equations
по: Kirby, J
Опубликовано: (2005) -
Exponential sums equations and the Schanuel conjecture
по: Zilber, B
Опубликовано: (2002)