Invariance principles for homogeneous sums: Universality of Gaussian Wiener chaos
We compute explicit bounds in the normal and chi-square approximations of multilinear homogenous sums (of arbitrary order) of general centered independent random variables with unit variance. In particular, we show that chaotic random variables enjoy the following form of universality: (a) the norma...
Main Authors: | Nourdin, I, Peccati, G, Reinert, G |
---|---|
פורמט: | Journal article |
שפה: | English |
יצא לאור: |
2009
|
פריטים דומים
-
Second order Poincaré inequalities and CLTs on Wiener space
מאת: Nourdin, I, et al.
יצא לאור: (2008) -
On the Wiener chaos expansion of the signature of a Gaussian process
מאת: Cass, T, et al.
יצא לאור: (2024) -
Stein's method and stochastic analysis of Rademacher functionals
מאת: Nourdin, I, et al.
יצא לאור: (2008) -
N-term Wiener chaos approximation rates for elliptic PDEs with lognormal Gaussian random inputs
מאת: Hoang, Viet Ha., et al.
יצא לאור: (2014) -
Stochastic Boundary Value Problems via Wiener Chaos Expansion
מאת: George Kanakoudis, et al.
יצא לאור: (2023-04-01)