Invariance principles for homogeneous sums: Universality of Gaussian Wiener chaos
We compute explicit bounds in the normal and chi-square approximations of multilinear homogenous sums (of arbitrary order) of general centered independent random variables with unit variance. In particular, we show that chaotic random variables enjoy the following form of universality: (a) the norma...
المؤلفون الرئيسيون: | Nourdin, I, Peccati, G, Reinert, G |
---|---|
التنسيق: | Journal article |
اللغة: | English |
منشور في: |
2009
|
مواد مشابهة
-
Second order Poincaré inequalities and CLTs on Wiener space
حسب: Nourdin, I, وآخرون
منشور في: (2008) -
On the Wiener chaos expansion of the signature of a Gaussian process
حسب: Cass, T, وآخرون
منشور في: (2024) -
Stein's method and stochastic analysis of Rademacher functionals
حسب: Nourdin, I, وآخرون
منشور في: (2008) -
N-term Wiener chaos approximation rates for elliptic PDEs with lognormal Gaussian random inputs
حسب: Hoang, Viet Ha., وآخرون
منشور في: (2014) -
Stochastic Boundary Value Problems via Wiener Chaos Expansion
حسب: George Kanakoudis, وآخرون
منشور في: (2023-04-01)