Invariance principles for homogeneous sums: Universality of Gaussian Wiener chaos
We compute explicit bounds in the normal and chi-square approximations of multilinear homogenous sums (of arbitrary order) of general centered independent random variables with unit variance. In particular, we show that chaotic random variables enjoy the following form of universality: (a) the norma...
Principais autores: | Nourdin, I, Peccati, G, Reinert, G |
---|---|
Formato: | Journal article |
Idioma: | English |
Publicado em: |
2009
|
Registros relacionados
-
Second order Poincaré inequalities and CLTs on Wiener space
por: Nourdin, I, et al.
Publicado em: (2008) -
On the Wiener chaos expansion of the signature of a Gaussian process
por: Cass, T, et al.
Publicado em: (2024) -
Stein's method and stochastic analysis of Rademacher functionals
por: Nourdin, I, et al.
Publicado em: (2008) -
N-term Wiener chaos approximation rates for elliptic PDEs with lognormal Gaussian random inputs
por: Hoang, Viet Ha., et al.
Publicado em: (2014) -
Stochastic Boundary Value Problems via Wiener Chaos Expansion
por: George Kanakoudis, et al.
Publicado em: (2023-04-01)