Invariance principles for homogeneous sums: Universality of Gaussian Wiener chaos
We compute explicit bounds in the normal and chi-square approximations of multilinear homogenous sums (of arbitrary order) of general centered independent random variables with unit variance. In particular, we show that chaotic random variables enjoy the following form of universality: (a) the norma...
Váldodahkkit: | Nourdin, I, Peccati, G, Reinert, G |
---|---|
Materiálatiipa: | Journal article |
Giella: | English |
Almmustuhtton: |
2009
|
Geahča maid
-
Second order Poincaré inequalities and CLTs on Wiener space
Dahkki: Nourdin, I, et al.
Almmustuhtton: (2008) -
On the Wiener chaos expansion of the signature of a Gaussian process
Dahkki: Cass, T, et al.
Almmustuhtton: (2024) -
Stein's method and stochastic analysis of Rademacher functionals
Dahkki: Nourdin, I, et al.
Almmustuhtton: (2008) -
N-term Wiener chaos approximation rates for elliptic PDEs with lognormal Gaussian random inputs
Dahkki: Hoang, Viet Ha., et al.
Almmustuhtton: (2014) -
Stochastic Boundary Value Problems via Wiener Chaos Expansion
Dahkki: George Kanakoudis, et al.
Almmustuhtton: (2023-04-01)