Unsupervised learning of landmarks by descriptor vector exchange
Equivariance to random image transformations is an effective method to learn landmarks of object categories, such as the eyes and the nose in faces, without manual supervision. However, this method does not explicitly guarantee that the learned landmarks are consistent with changes between different...
المؤلفون الرئيسيون: | Thewlis, J, Albanie, S, Bilen, H, Vedaldi, A |
---|---|
التنسيق: | Conference item |
اللغة: | English |
منشور في: |
IEEE
2020
|
مواد مشابهة
-
Unsupervised learning of object landmarks by factorized spatial embeddings
حسب: Thewlis, J, وآخرون
منشور في: (2017) -
Modelling and unsupervised learning of symmetric deformable object categories
حسب: Thewlis, J, وآخرون
منشور في: (2018) -
Unsupervised learning of object frames by dense equivariant image labelling
حسب: Thewlis, J, وآخرون
منشور في: (2017) -
Unsupervised learning of object landmarks through conditional image generation
حسب: Jakab, T, وآخرون
منشور في: (2018) -
Learning grimaces by watching TV
حسب: Albanie, S, وآخرون
منشور في: (2016)