Unsupervised learning of landmarks by descriptor vector exchange
Equivariance to random image transformations is an effective method to learn landmarks of object categories, such as the eyes and the nose in faces, without manual supervision. However, this method does not explicitly guarantee that the learned landmarks are consistent with changes between different...
Main Authors: | Thewlis, J, Albanie, S, Bilen, H, Vedaldi, A |
---|---|
פורמט: | Conference item |
שפה: | English |
יצא לאור: |
IEEE
2020
|
פריטים דומים
-
Unsupervised learning of object landmarks by factorized spatial embeddings
מאת: Thewlis, J, et al.
יצא לאור: (2017) -
Modelling and unsupervised learning of symmetric deformable object categories
מאת: Thewlis, J, et al.
יצא לאור: (2018) -
Unsupervised learning of object frames by dense equivariant image labelling
מאת: Thewlis, J, et al.
יצא לאור: (2017) -
Unsupervised learning of object landmarks through conditional image generation
מאת: Jakab, T, et al.
יצא לאור: (2018) -
Learning grimaces by watching TV
מאת: Albanie, S, et al.
יצא לאור: (2016)