Unsupervised learning of landmarks by descriptor vector exchange
Equivariance to random image transformations is an effective method to learn landmarks of object categories, such as the eyes and the nose in faces, without manual supervision. However, this method does not explicitly guarantee that the learned landmarks are consistent with changes between different...
Asıl Yazarlar: | Thewlis, J, Albanie, S, Bilen, H, Vedaldi, A |
---|---|
Materyal Türü: | Conference item |
Dil: | English |
Baskı/Yayın Bilgisi: |
IEEE
2020
|
Benzer Materyaller
-
Unsupervised learning of object landmarks by factorized spatial embeddings
Yazar:: Thewlis, J, ve diğerleri
Baskı/Yayın Bilgisi: (2017) -
Modelling and unsupervised learning of symmetric deformable object categories
Yazar:: Thewlis, J, ve diğerleri
Baskı/Yayın Bilgisi: (2018) -
Unsupervised learning of object frames by dense equivariant image labelling
Yazar:: Thewlis, J, ve diğerleri
Baskı/Yayın Bilgisi: (2017) -
Unsupervised learning of object landmarks through conditional image generation
Yazar:: Jakab, T, ve diğerleri
Baskı/Yayın Bilgisi: (2018) -
Learning grimaces by watching TV
Yazar:: Albanie, S, ve diğerleri
Baskı/Yayın Bilgisi: (2016)