Unsupervised deep learning identifies semantic disentanglement in single inferotemporal face patch neurons
In order to better understand how the brain perceives faces, it is important to know what objective drives learning in the ventral visual stream. To answer this question, we model neural responses to faces in the macaque inferotemporal (IT) cortex with a deep self-supervised generative model, β-VAE,...
Asıl Yazarlar: | Higgins, I, Chang, L, Langston, V, Hassabis, D, Summerfield, C, Tsao, D, Botvinick, M |
---|---|
Materyal Türü: | Journal article |
Dil: | English |
Baskı/Yayın Bilgisi: |
Springer Nature
2021
|
Benzer Materyaller
-
Unsupervised deep learning identifies semantic disentanglement in single inferotemporal face patch neurons
Yazar:: Irina Higgins, ve diğerleri
Baskı/Yayın Bilgisi: (2021-11-01) -
Shape Similarity, Better than Semantic Membership, Accounts for the Structure of Visual Object Representations in a Population of Monkey Inferotemporal Neurons
Yazar:: Baldassi, Carlo, ve diğerleri
Baskı/Yayın Bilgisi: (2013) -
Visual identification following inferotemporal ablation in the monkey.
Yazar:: Gaffan, D, ve diğerleri
Baskı/Yayın Bilgisi: (1986) -
Disentangling the latent space of GANs for semantic face editing
Yazar:: Yongjie Niu, ve diğerleri
Baskı/Yayın Bilgisi: (2023-01-01) -
Disentangling the latent space of GANs for semantic face editing.
Yazar:: Yongjie Niu, ve diğerleri
Baskı/Yayın Bilgisi: (2023-01-01)