Symmetric laplacians, quantum density matrices and their Von-Neumann entropy
We show that the (normalized) symmetric Laplacian of a simple graph can be obtained from the partial trace over a pure bipartite quantum state that resides in a bipartite Hilbert space (one part corresponding to the vertices, the other corresponding to the edges). This suggests an interpretation of...
Главные авторы: | Simmons, D, Coon, J, Datta, A |
---|---|
Формат: | Journal article |
Опубликовано: |
Elsevier
2017
|
Схожие документы
-
The von Neumann Theil index: Characterizing graph centralization using the von Neumann index
по: Simmons, D, и др.
Опубликовано: (2018) -
Approximations for the von Neumann and Rényi entropies of graphs with circulant type Laplacians
по: Natália Bebiano, и др.
Опубликовано: (2022-03-01) -
Analysis of Kernel Matrices via the von Neumann Entropy and Its Relation to RVM Performances
по: Lluís A. Belanche-Muñoz, и др.
Опубликовано: (2023-01-01) -
The von Neumann Entropy for Mixed States
по: Jorge A. Anaya-Contreras, и др.
Опубликовано: (2019-01-01) -
The Physical Basis of the Gibbs-von Neumann entropy
по: Maroney, O
Опубликовано: (2007)