Convergence of a finite volume scheme for a system of interacting species with cross-diffusion
In this work we present the convergence of a positivity preserving semi-discrete finite volume scheme for a coupled system of two non-local partial differential equations with cross-diffusion. The key to proving the convergence result is to establish positivity in order to obtain a discrete energy e...
Auteurs principaux: | Carrillo de la Plata, J, Filbet, F, Schmidtchen, M |
---|---|
Format: | Journal article |
Langue: | English |
Publié: |
Springer Verlag
2020
|
Documents similaires
-
Convergence of a fully discrete and energy-dissipating finite-volume scheme for aggregation-diffusion equations
par: Bailo, R, et autres
Publié: (2020) -
Splitting schemes and segregation in reaction cross-diffusion systems
par: Carrillo, JA, et autres
Publié: (2018) -
A finite-volume scheme for fractional diffusion on bounded domains
par: Bailo, R, et autres
Publié: (2024) -
A finite-volume scheme for fractional diffusion on bounded domains
par: Rafael Bailo, et autres
Publié: (2025-04-01) -
Well-Balanced Finite-Volume Schemes for Hydrodynamic Equations with General Free Energy
par: Carrillo de la Plata, JA, et autres
Publié: (2020)