Bayesian inference based only on simulated likelihood: particle filter analysis of dynamic economic models.
Suppose we wish to carry out likelihood based inference but we solely have an unbiased simulation based estimator of the likelihood. We note that unbiasedness is enough when the estimated likelihood is used inside a Metropolis-Hastings algorithm. This result has recently been introduced in statistic...
Автори: | Flury, T, Shephard, N |
---|---|
Формат: | Journal article |
Мова: | English |
Опубліковано: |
Cambridge University Press
2011
|
Схожі ресурси
Схожі ресурси
-
Bayesian inference based only on simulated likelihood: particle filter analysis of dynamic economic models.
за авторством: Flury, T, та інші
Опубліковано: (2008) -
Learning and filtering via simulation: smoothly jittered particle filters.
за авторством: Flury, T, та інші
Опубліковано: (2009) -
Learning and filtering via simulation: smoothly jittered particle filters
за авторством: Shephard, N, та інші
Опубліковано: (2009) -
Simulated likelihood inference for stochastic volatility models using continuous particle filtering
за авторством: Pitt, M, та інші
Опубліковано: (2014) -
Simulated likelihood inference for stochastic volatility models using continuous particle filtering
за авторством: Pitt, M, та інші
Опубліковано: (2014)