CALCULUS ON SURFACES WITH GENERAL CLOSEST POINT FUNCTIONS
The closest point method for solving partial differential equations (PDEs) posed on surfaces was recently introduced by Ruuth and Merriman [J. Comput. Phys., 227 (2008), pp. 1943- 1961] and successfully applied to a variety of surface PDEs. In this paper we study the theoretical foundations of this...
Главные авторы: | Maerz, T, Macdonald, C |
---|---|
Формат: | Journal article |
Язык: | English |
Опубликовано: |
2012
|
Схожие документы
-
Calculus on surfaces with general closest point functions
по: März, T, и др.
Опубликовано: (2012) -
Segmentation on surfaces with the closest point method
по: Tian, L, и др.
Опубликовано: (2009) -
Level set equations on surfaces via the Closest Point Method
по: Macdonald, C, и др.
Опубликовано: (2008) -
Geometric multigrid and closest point methods for surfaces and general domains
по: Chen, Y
Опубликовано: (2015) -
Solving eigenvalue problems on curved surfaces using the Closest Point Method
по: Macdonald, C, и др.
Опубликовано: (2011)