Robust full Bayesian methods for neural networks
In this paper, we propose a full Bayesian model for neural networks. This model treats the model dimension (number of neurons), model parameters, regularisation parameters and noise parameters as random variables that need to be estimated. We then propose a reversible jump Markov chain Monte Carlo (...
Main Authors: | Andrieu, C, de Freitas, J, Doucet, A |
---|---|
Formato: | Conference item |
Publicado em: |
Neural information processing systems foundation
2000
|
Registos relacionados
-
Robust Full Bayesian Learning for Radial Basis Networks
Por: Andrieu, C, et al.
Publicado em: (2001) -
Robust full Bayesian learning for radial basis networks.
Por: Andrieu, C, et al.
Publicado em: (2001) -
Sequential MCMC for Bayesian model selection
Por: Andrieu, C, et al.
Publicado em: (1999) -
On sequential Monte Carlo sampling methods for Bayesian filtering
Por: Doucet, A, et al.
Publicado em: (2000) -
Particle methods for Bayesian modeling and enhancement of speech signals
Por: Vermaak, J, et al.
Publicado em: (2002)