Robust full Bayesian methods for neural networks

In this paper, we propose a full Bayesian model for neural networks. This model treats the model dimension (number of neurons), model parameters, regularisation parameters and noise parameters as random variables that need to be estimated. We then propose a reversible jump Markov chain Monte Carlo (...

Descripció completa

Dades bibliogràfiques
Autors principals: Andrieu, C, de Freitas, J, Doucet, A
Format: Conference item
Publicat: Neural information processing systems foundation 2000