Understanding and extending subgraph GNNs by rethinking their symmetries
Subgraph GNNs are a recent class of expressive Graph Neural Networks (GNNs) which model graphs as collections of subgraphs. So far, the design space of possible Subgraph GNN architectures as well as their basic theoretical properties are still largely unexplored. In this paper, we study the most pro...
المؤلفون الرئيسيون: | Frasca, F, Bevilacqua, B, Bronstein, M, Maron, H |
---|---|
التنسيق: | Conference item |
اللغة: | English |
منشور في: |
Curran Associates
2022
|
مواد مشابهة
-
How does over-squashing affect the power of GNNs?
حسب: Di Giovanni, F, وآخرون
منشور في: (2024) -
Neural sheaf diffusion: a topological perspective on heterophily and oversmoothing in GNNs
حسب: Bodnar, C, وآخرون
منشور في: (2023) -
From Graph Theory to Graph Neural Networks (GNNs): The Opportunities of GNNs in Power Electronics
حسب: Yuzhuo Li, وآخرون
منشور في: (2023-01-01) -
Learning Augmentation for GNNs With Consistency Regularization
حسب: Hyeonjin Park, وآخرون
منشور في: (2021-01-01) -
On the correspondence between monotonic max-sum GNNs and datalog
حسب: Tena Cucala, D, وآخرون
منشور في: (2023)