Understanding and extending subgraph GNNs by rethinking their symmetries
Subgraph GNNs are a recent class of expressive Graph Neural Networks (GNNs) which model graphs as collections of subgraphs. So far, the design space of possible Subgraph GNN architectures as well as their basic theoretical properties are still largely unexplored. In this paper, we study the most pro...
Հիմնական հեղինակներ: | Frasca, F, Bevilacqua, B, Bronstein, M, Maron, H |
---|---|
Ձևաչափ: | Conference item |
Լեզու: | English |
Հրապարակվել է: |
Curran Associates
2022
|
Նմանատիպ նյութեր
-
How does over-squashing affect the power of GNNs?
: Di Giovanni, F, և այլն
Հրապարակվել է: (2024) -
Neural sheaf diffusion: a topological perspective on heterophily and oversmoothing in GNNs
: Bodnar, C, և այլն
Հրապարակվել է: (2023) -
From Graph Theory to Graph Neural Networks (GNNs): The Opportunities of GNNs in Power Electronics
: Yuzhuo Li, և այլն
Հրապարակվել է: (2023-01-01) -
Learning Augmentation for GNNs With Consistency Regularization
: Hyeonjin Park, և այլն
Հրապարակվել է: (2021-01-01) -
On the correspondence between monotonic max-sum GNNs and datalog
: Tena Cucala, D, և այլն
Հրապարակվել է: (2023)