Understanding and extending subgraph GNNs by rethinking their symmetries
Subgraph GNNs are a recent class of expressive Graph Neural Networks (GNNs) which model graphs as collections of subgraphs. So far, the design space of possible Subgraph GNN architectures as well as their basic theoretical properties are still largely unexplored. In this paper, we study the most pro...
Автори: | Frasca, F, Bevilacqua, B, Bronstein, M, Maron, H |
---|---|
Формат: | Conference item |
Мова: | English |
Опубліковано: |
Curran Associates
2022
|
Схожі ресурси
Схожі ресурси
-
How does over-squashing affect the power of GNNs?
за авторством: Di Giovanni, F, та інші
Опубліковано: (2024) -
Neural sheaf diffusion: a topological perspective on heterophily and oversmoothing in GNNs
за авторством: Bodnar, C, та інші
Опубліковано: (2023) -
From Graph Theory to Graph Neural Networks (GNNs): The Opportunities of GNNs in Power Electronics
за авторством: Yuzhuo Li, та інші
Опубліковано: (2023-01-01) -
Learning Augmentation for GNNs With Consistency Regularization
за авторством: Hyeonjin Park, та інші
Опубліковано: (2021-01-01) -
On the correspondence between monotonic max-sum GNNs and datalog
за авторством: Tena Cucala, D, та інші
Опубліковано: (2023)