Kidnapped radar: topological radar localisation using rotationally-invariant metric learning
This paper presents a system for robust, large-scale topological localisation using Frequency-Modulated ContinuousWave (FMCW) scanning radar. We learn a metric space for embedding polar radar scans using CNN and NetVLAD architectures traditionally applied to the visual domain. However, we tailor the...
Asıl Yazarlar: | Gadd, M, Sǎftescu, Ş, De Martini, D, Barnes, D, Newman, P |
---|---|
Materyal Türü: | Conference item |
Dil: | English |
Baskı/Yayın Bilgisi: |
IEEE Xplore
2020
|
Benzer Materyaller
-
kRadar++: coarse-to-fine FMCW scanning radar localisation
Yazar:: De Martini, D, ve diğerleri
Baskı/Yayın Bilgisi: (2020) -
Look around you: sequence-based radar place recognition with learned rotational invariance
Yazar:: Gadd, M, ve diğerleri
Baskı/Yayın Bilgisi: (2020) -
kRadar++: Coarse-to-Fine FMCW Scanning Radar Localisation
Yazar:: Daniele De Martini, ve diğerleri
Baskı/Yayın Bilgisi: (2020-10-01) -
Under the radar: learning to predict robust keypoints for odometry estimation and metric localisation in radar
Yazar:: Barnes, D, ve diğerleri
Baskı/Yayın Bilgisi: (2020) -
RSL-Net: localising in satellite images from a radar on the ground
Yazar:: Tang, TY, ve diğerleri
Baskı/Yayın Bilgisi: (2020)