Controlled embeddings into groups that have no non-trivial finite quotients

If a class of finitely generated groups Curly(G) is closed under isometric amalgamations along free subgroups, then every G in Curly(G) can be quasi-isometrically embedded in a group Hat(G) in Curly(G) that has no proper subgroups of finite index. Every compact, connected, non-positively curved sp...

Повний опис

Бібліографічні деталі
Автор: Bridson, M
Формат: Journal article
Опубліковано: 1998
Search Result 1

Controlled embeddings into groups that have no non-trivial finite quotients за авторством Bridson, M

Опубліковано 1999
Journal article