Deep FusionNet for point cloud semantic segmentation
Many point cloud segmentation methods rely on transferring irregular points into a voxel-based regular representation. Although voxel-based convolutions are useful for feature aggregation, they produce ambiguous or wrong predictions if a voxel contains points from different classes. Other approaches...
Päätekijät: | Zhang, F, Fang, J, Wah, B, Torr, PHS |
---|---|
Aineistotyyppi: | Conference item |
Kieli: | English |
Julkaistu: |
Springer International Publishing
2020
|
Samankaltaisia teoksia
-
Segmentation of glioblastomas via 3D FusionNet
Tekijä: Xiangyu Guo, et al.
Julkaistu: (2024-11-01) -
FusionNet: A Deep Fully Residual Convolutional Neural Network for Image Segmentation in Connectomics
Tekijä: Tran Minh Quan, et al.
Julkaistu: (2021-05-01) -
FusionNet: A Convolution–Transformer Fusion Network for Hyperspectral Image Classification
Tekijä: Liming Yang, et al.
Julkaistu: (2022-08-01) -
GL-FusionNet: Fusing global and local features to classify deep and superficial partial thickness burn
Tekijä: Zhiwei Li, et al.
Julkaistu: (2023-03-01) -
Multi-Modal Medical Image Fusion Based on FusionNet in YIQ Color Space
Tekijä: Kai Guo, et al.
Julkaistu: (2020-12-01)