Parabolic equations with divergence-free drift in space L_{t}^{l}L_{x}^{q}
In this paper, we study the fundamental solution $\varGamma(t,x;\tau,\xi)$ of the parabolic operator $L_t=\partial_t-\Delta+b(t,x)\cdot\nabla$, where for every $t$, $b(t,\cdot)$ is a divergence-free vector field; and we consider the case that $b$ belongs to the Lebesgue space $L^{\ell}(0,T;L^q(\math...
Главные авторы: | Qian, Z, Xi, G |
---|---|
Формат: | Journal article |
Опубликовано: |
Indiana University Mathematics Journal
2019
|
Схожие документы
-
Parabolic equations with singular divergence‐free drift vector fields
по: Qian, Z, и др.
Опубликовано: (2018) -
Hölder estimates for fractional parabolic equations with critical divergence free drifts
по: Delgadino, MG, и др.
Опубликовано: (2017) -
Parabolic equations and diffusion processes with divergence-free vector fields
по: Xi, G
Опубликовано: (2018) -
Local W^{1,p}-regularity estimates for weak solutions of parabolic equations with singular divergence-free drifts
по: Tuoc Phan
Опубликовано: (2017-03-01) -
Markov semi-groups generated by elliptic operators with divergence-free drift
по: Qian, Z, и др.
Опубликовано: (2021)