Generative modelling for supervised, unsupervised and private learning

<p>In this thesis we develop several state-of-the-art generative modelling-based approaches for a variety of supervised, unsupervised and private learning problems. In the (almost) supervised domain, we tackle the problems of treatment effect estimation, imputation and feature selection. For t...

Full beskrivning

Bibliografiska uppgifter
Huvudupphovsman: Jordon, J
Övriga upphovsmän: van der Schaar, M
Materialtyp: Lärdomsprov
Språk:English
Publicerad: 2021
Ämnen: