Generative modelling for supervised, unsupervised and private learning
<p>In this thesis we develop several state-of-the-art generative modelling-based approaches for a variety of supervised, unsupervised and private learning problems. In the (almost) supervised domain, we tackle the problems of treatment effect estimation, imputation and feature selection. For t...
Huvudupphovsman: | |
---|---|
Övriga upphovsmän: | |
Materialtyp: | Lärdomsprov |
Språk: | English |
Publicerad: |
2021
|
Ämnen: |