Adaptive cubic regularisation methods for unconstrained optimization. Part I: motivation, convergence and numerical results.
An Adaptive Regularisation algorithm using Cubics (ARC) is proposed for unconstrained optimization, generalizing at the same time an unpublished method due to Griewank (Technical Report NA/12, 1981, DAMTP, University of Cambridge), an algorithm by Nesterov and Polyak (Math Program 108(1):177-205, 20...
Автори: | Cartis, C, Gould, N, Toint, P |
---|---|
Формат: | Journal article |
Мова: | English |
Опубліковано: |
2011
|
Схожі ресурси
-
Adaptive cubic regularisation methods for unconstrained optimization. Part II: worst-case function- and derivative-evaluation complexity.
за авторством: Cartis, C, та інші
Опубліковано: (2011) -
Adaptive cubic overestimation methods for unconstrained optimization
за авторством: Cartis, C, та інші
Опубліковано: (2007) -
Adaptive cubic overestimation methods for unconstrained optimization
за авторством: Cartis, C, та інші
Опубліковано: (2007) -
Evaluation complexity of adaptive cubic regularization methods for convex unconstrained optimization.
за авторством: Cartis, C, та інші
Опубліковано: (2012) -
Complexity bounds for second-order optimality in unconstrained optimization.
за авторством: Cartis, C, та інші
Опубліковано: (2012)